[tex]\forall_{\alpha,\beta,\gamma,\delta,\epsilon \in R^n}\int\limits_{\frac{2}{3}}^{\frac{\sqrt{5}}{2}} {f(\alpha,\beta,\gamma,\delta,\epsilon)\partial\alpha\partial\beta\partial\gamma\partial\delta\partial\epsilon}
[/tex][tex]=\exists_{\Phi \in C^n[-\infty,\infty], x \in R^n} \sum\limits_{\sqrt[3]{2}}^{2^{3}}{\prod\limits_{0}^{\infty}{\Phi(x)}}[/tex]
Takie cos:
\forall_{\alpha,\beta,\gamma,\delta,\epsilon \in R^n}\int\limits_{\frac{2}{3}}^{\frac{\sqrt{5}}{2}} {f(\alpha,\beta,\gamma,\delta,\epsilon)\partial\alpha\partial\beta\partial\gamma\partial\delta\partial\epsilon}=\exists_{\Phi \in C^n[-\infty,\infty], x \in R^n} \sum\limits_{\sqrt[3]{2}}^{2^{3}}{\prod\limits_{0}^{\infty} }
dzial:
[tex]\forall_{\alpha,\beta,\gamma,\delta,\epsilon \in R^n}\int\limits_{\frac{2}{3}}^{\frac{\sqrt{5}}{2}} {f(\alpha,\beta,\gamma,\delta,\epsilon)\partial\alpha\partial\beta\partial\gamma\partial\delta\partial\epsilon}=\exists_{\Phi \in C^n[-\infty,\infty], x \in R^n} \sum\limits_{\sqrt[3]{2}}^{2^{3}}{\prod\limits_{0}^{\infty} }[/tex]
ale to juz nie

(jakies pomysly)
\forall_{\alpha,\beta,\gamma,\delta,\epsilon \in R^n}\int\limits_{\frac{2}{3}}^{\frac{\sqrt{5}}{2}} {f(\alpha,\beta,\gamma,\delta,\epsilon)\partial\alpha\partial\beta\partial\gamma\partial\delta\partial\epsilon}=\exists_{\Phi \in C^n[-\infty,\infty], x \in R^n} \sum\limits_{\sqrt[3]{2}}^{2^{3}}{\prod\limits_{0}^{\infty} {\Phi{x}}}
[tex]\forall_{\alpha,\beta,\gamma,\delta,\epsilon \in R^n}\int\limits_{\frac{2}{3}}^{\frac{\sqrt{5}}{2}} {f(\alpha,\beta,\gamma,\delta,\epsilon)\partial\alpha\partial\beta\partial\gamma\partial\delta\partial\epsilon}=\exists_{\Phi \in C^n[-\infty,\infty], x \in R^n} \sum\limits_{\sqrt[3]{2}}^{2^{3}}{\prod\limits_{0}^{\infty} {\Phi{x}}}[/tex]